Title

Quantum Image Processing

Focus of the seminar

- Fast encoding of images and filters
- Efficient quantum convolutions
- Fully quantum image manipulation algorithms

Image Processing

- Applications
- Techniques
- Problems

Some ApplicationsMedical ImagingAstronomy

Microscopy

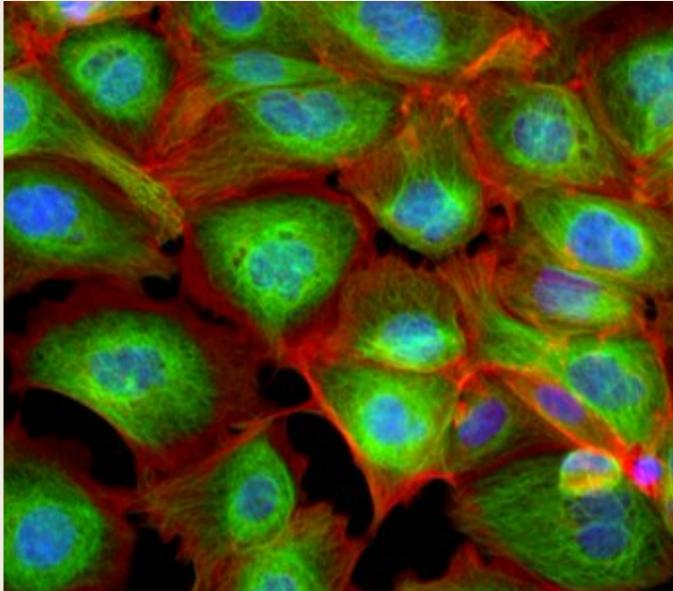


Image Processing

- Applications
- Techniques
- Problems

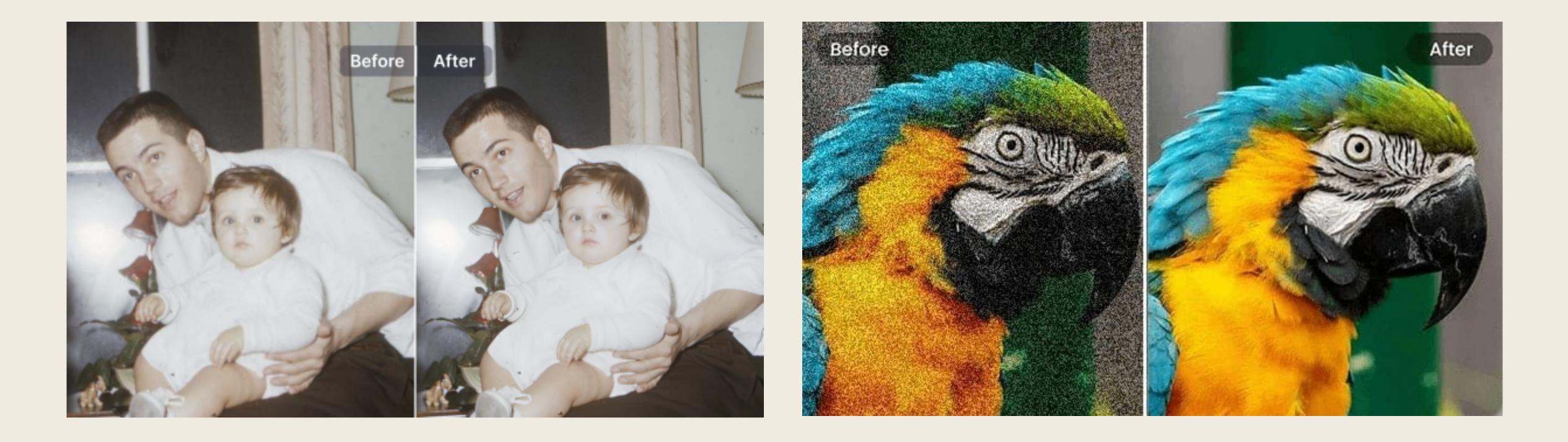
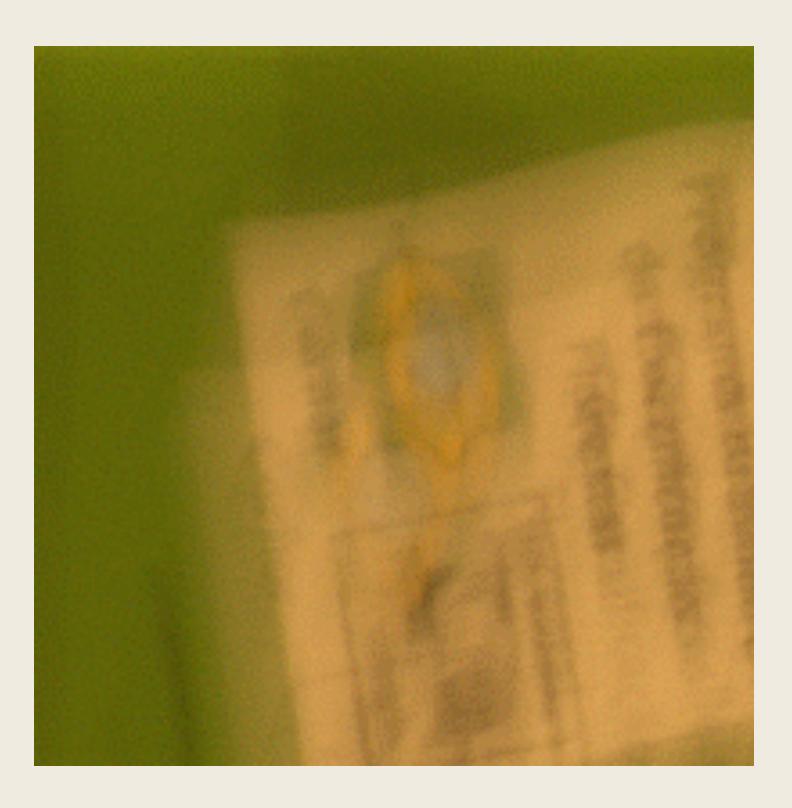


Image Enhancement

Image Restoration: Deblurring



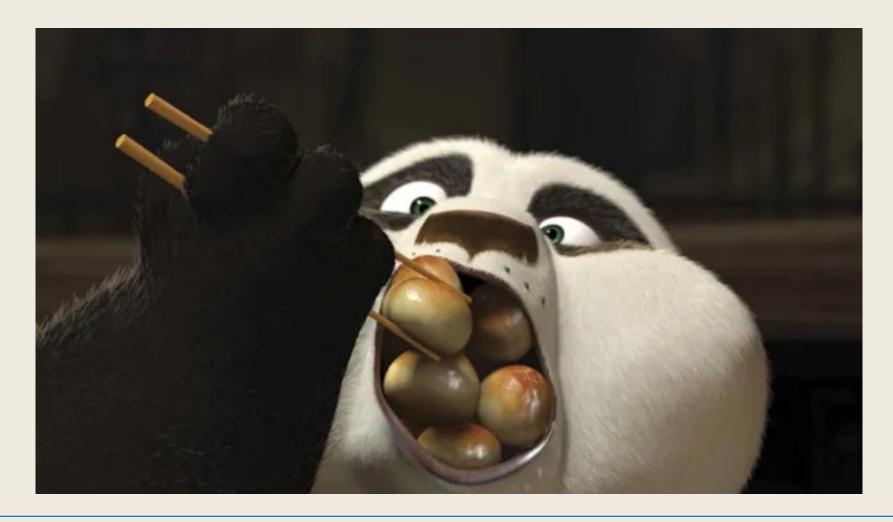
Edge Detection

Image Processing

- Applications
- Techniques
- Problems

Space

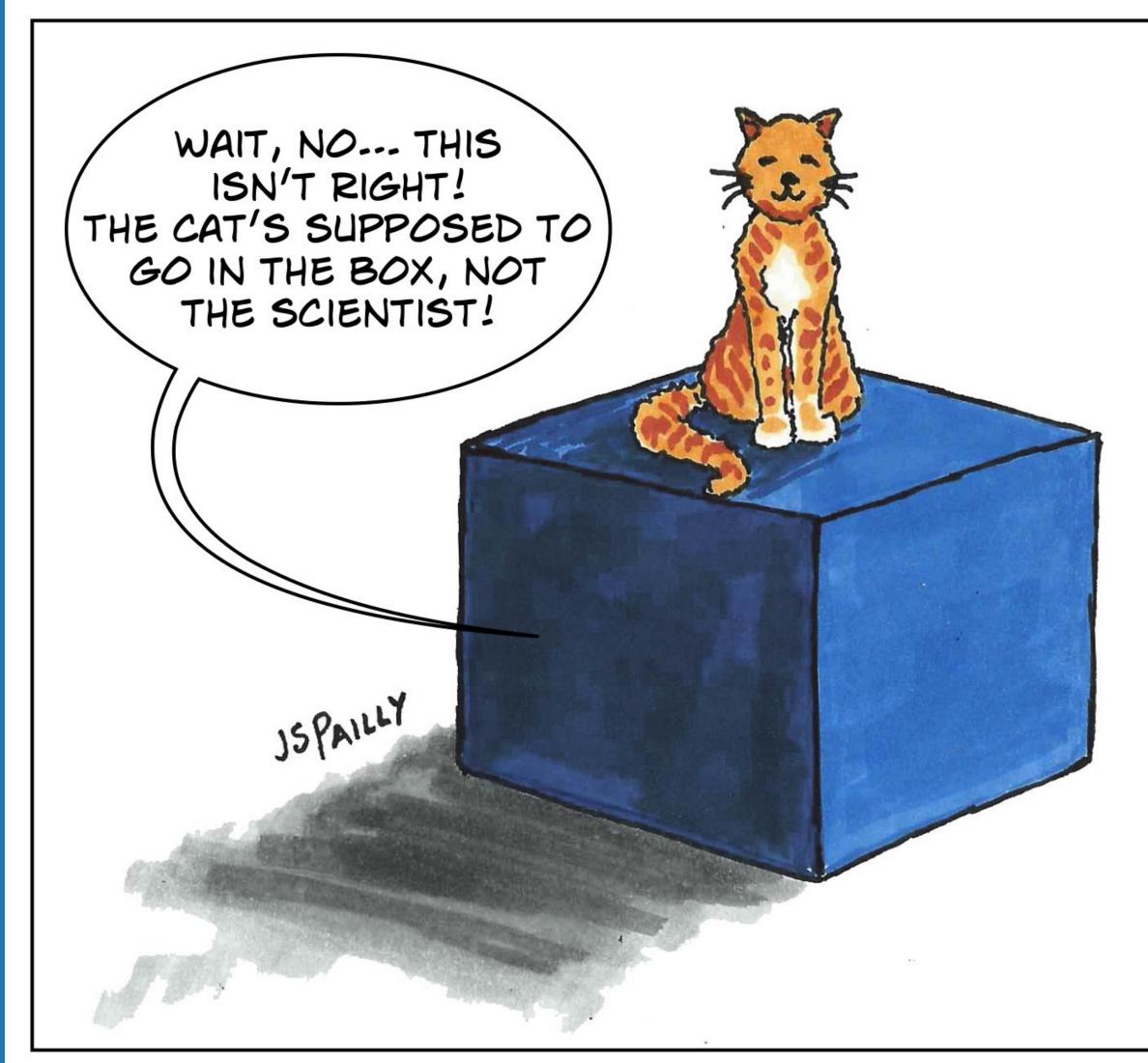
Time



Problems

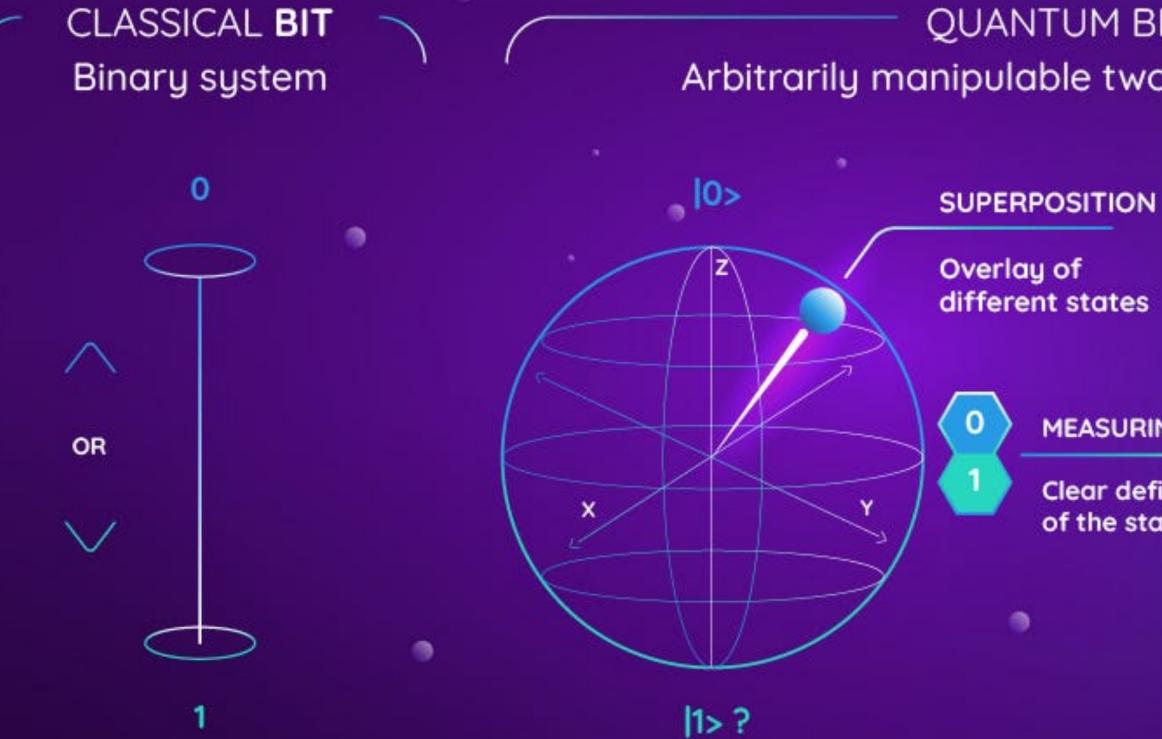
55 million rendering hours

Let's think outside the box!



Quantum Computing

- Quantum Foundations
- Quantum Speedup



Quantum Speedup

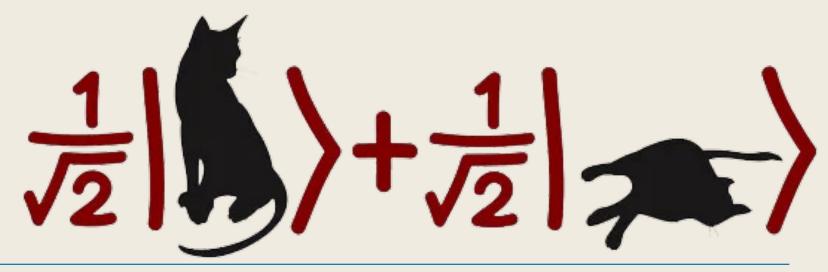
QUANTUM BIT,,QUBIT" Arbitrarily manipulable two-state quantum system

0> MEASURING **Clear definition** of the state 1>?

Parallel arithmetic operations possible

Exponential multiplication per qubit

Complex problems can be solved in less time



Constant Balanced Problem

Funct

f(x)

$f: \{0, 1\}^n \to \{0, 1\}$

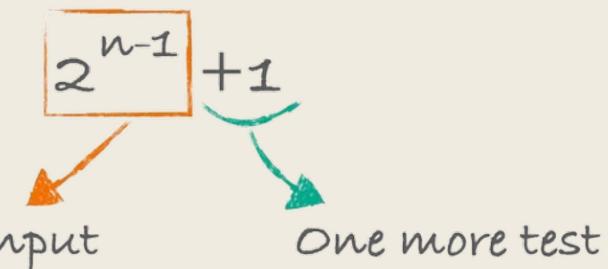
- f(x)
- f(x)
- f(x)

Quantum Speedup

tion	x	f(x)	Туре
= 0	$\begin{array}{c} 0 \\ 1 \end{array}$	0 0	Constant
= 1	$0 \\ 1$	1 1	Constant
= x	$0 \\ 1$	$egin{array}{c} 0 \ 1 \end{array}$	Balanced
$= x \oplus 1$	$0 \\ 1$	$egin{array}{c} 1 \\ 0 \end{array}$	Balanced

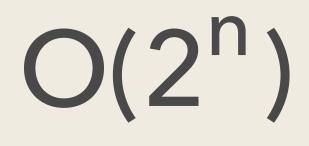
Classical Solution

$f: \{0, 1\}^n \to \{0, 1\}$

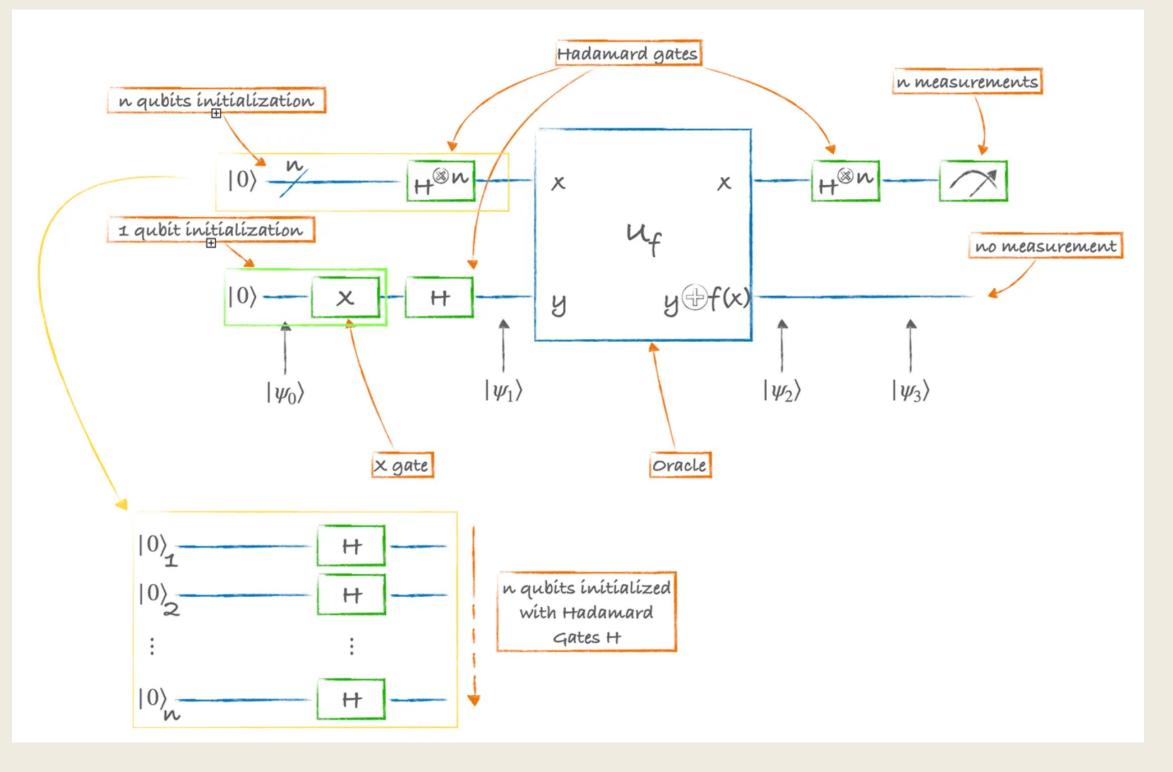


Half of the input

Quantum Speedup



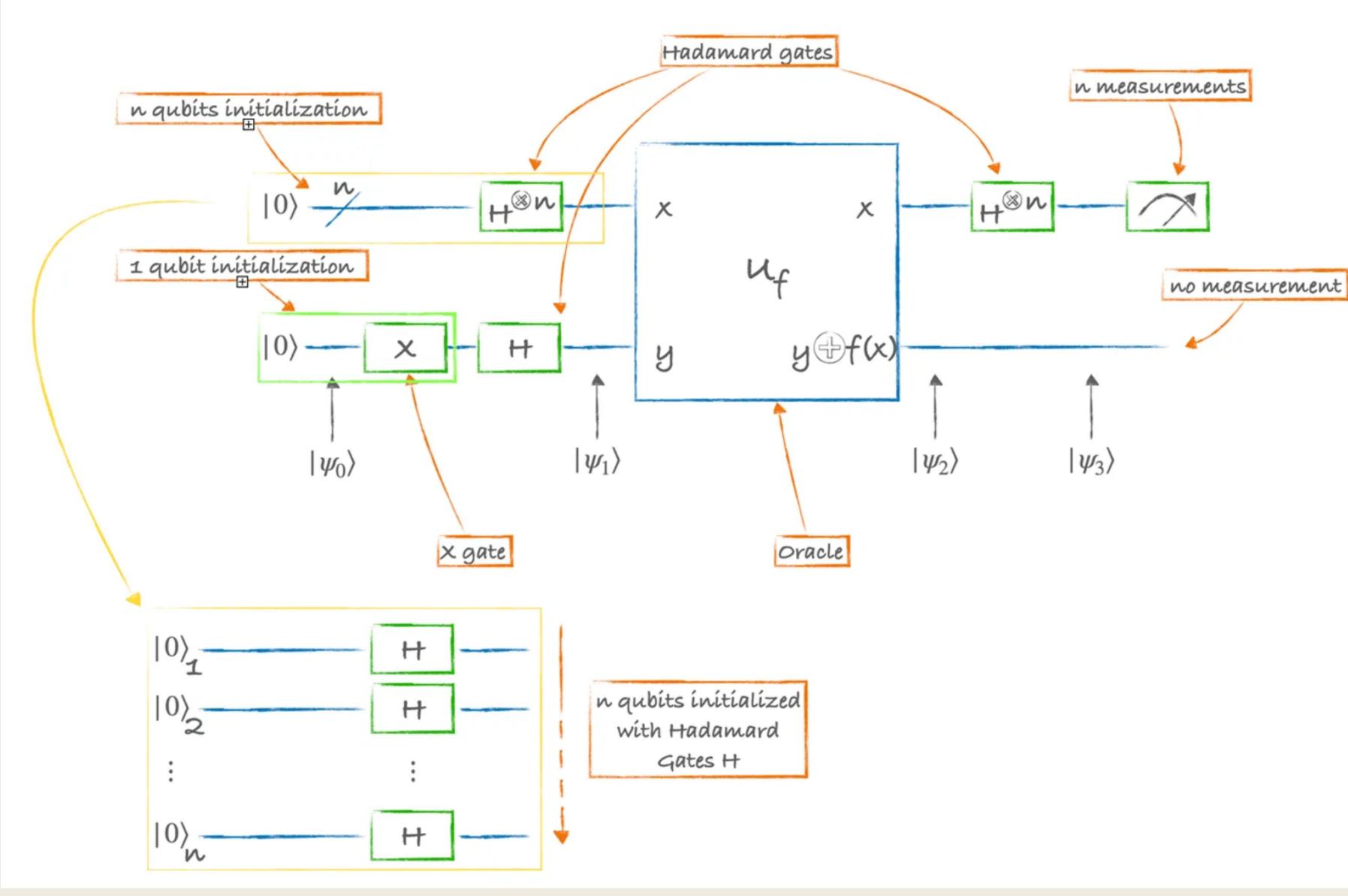
Deutsch-Josza Algorithm



$f: \{0, 1\}^n \to \{0, 1\}$

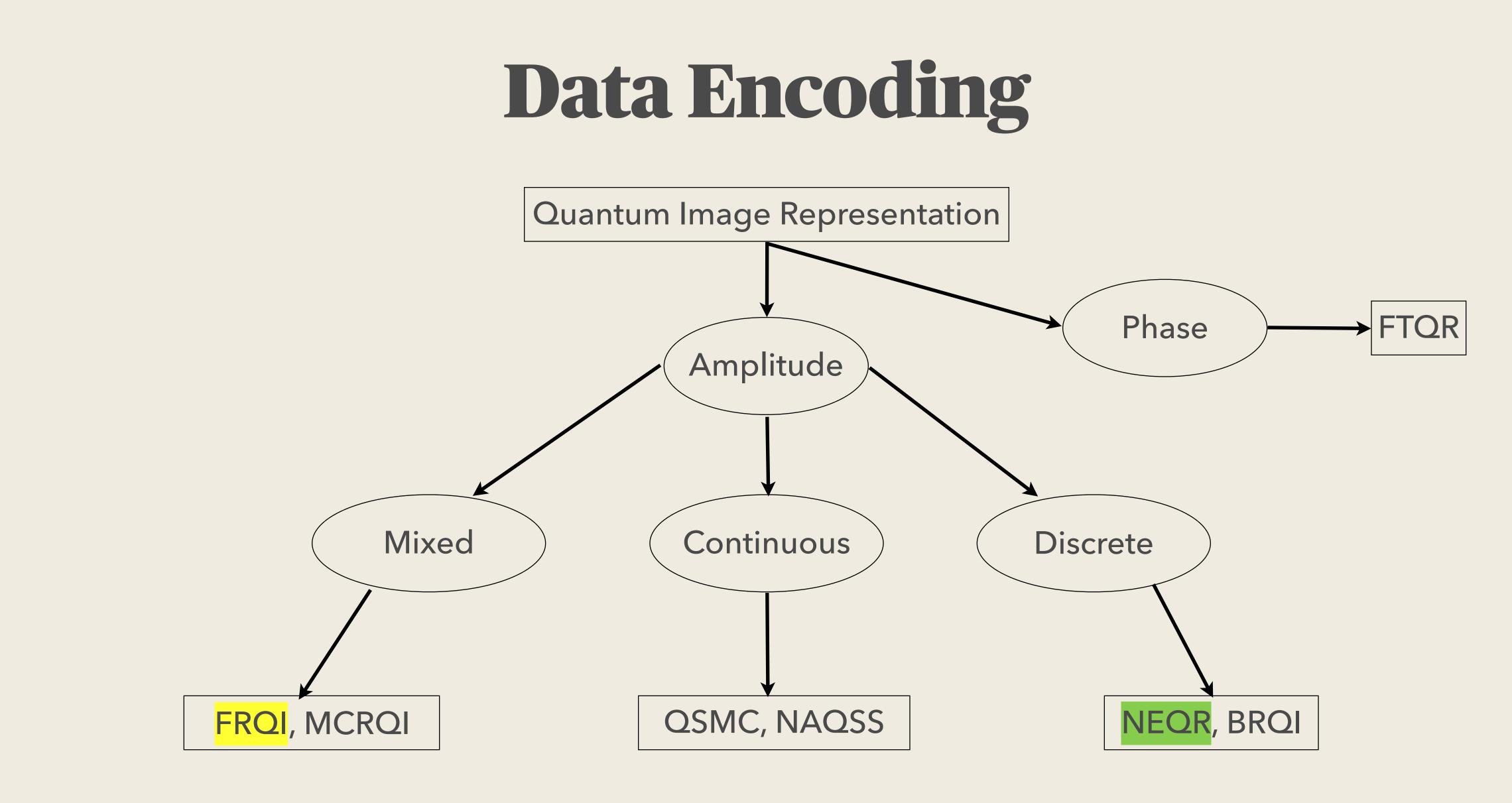
Quantum Speedup

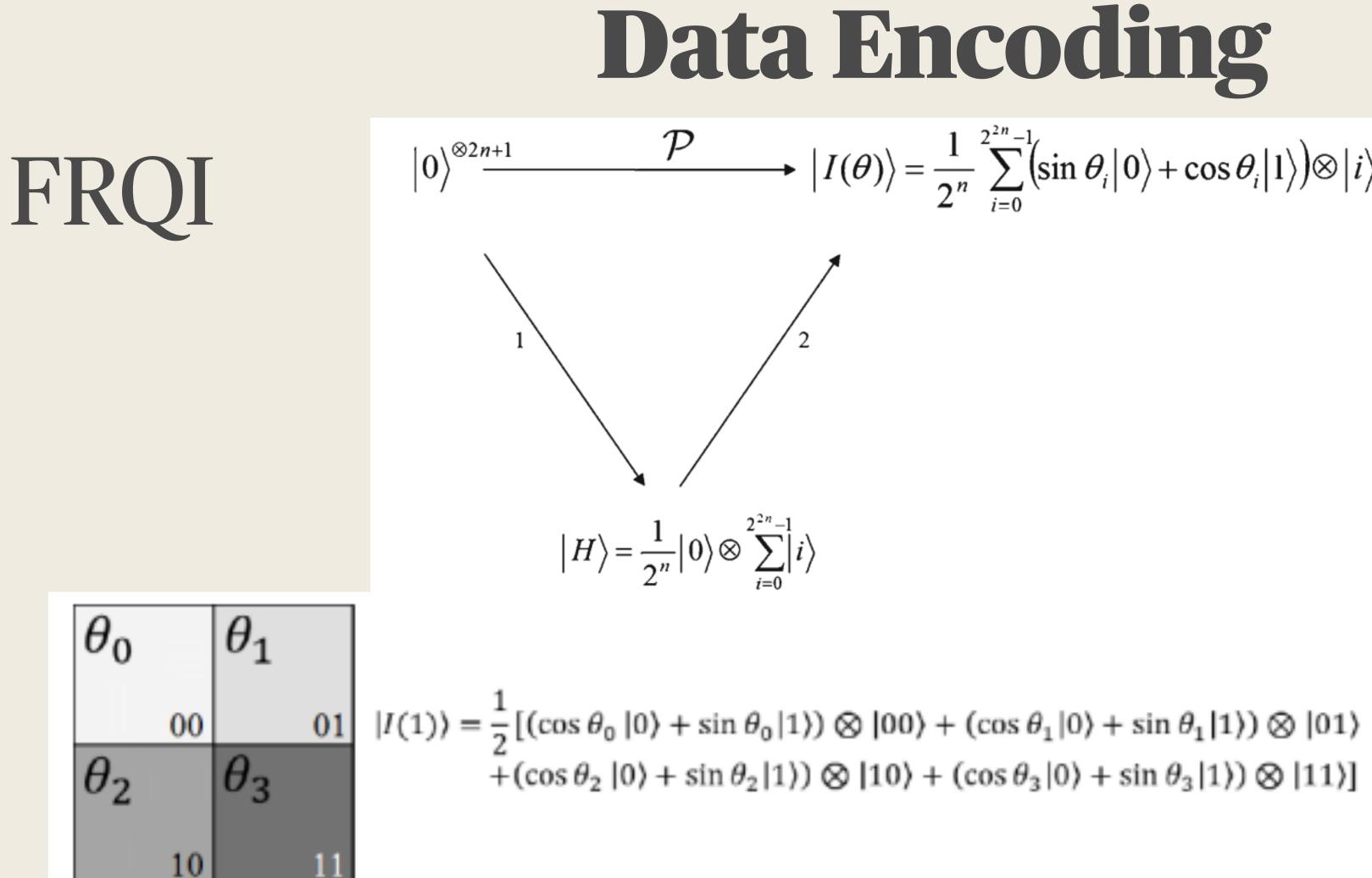
O(1)



Quantum Speedup

Open Problems





Data Encoding

$$(\theta) = \frac{1}{2^n} \sum_{i=0}^{2^{2^n} - 1} \left(\sin \theta_i \big| 0 \big\rangle + \cos \theta_i \big| 1 \big\rangle \right) \otimes \big| i \big\rangle$$

 $\frac{1}{2} + (\cos \theta_2 | 0 \rangle + \sin \theta_2 | 1 \rangle) \otimes | 10 \rangle + (\cos \theta_3 | 0 \rangle + \sin \theta_3 | 1 \rangle) \otimes | 11 \rangle$

Data Encoding

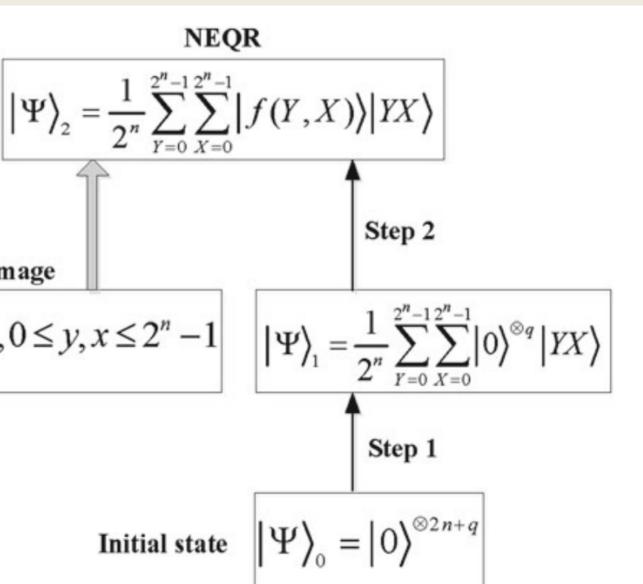
Classical image

$$I = [f(y, x)]_{2^n \times 2^n}, 0$$

$$|I\rangle = \frac{1}{2} \langle |0\rangle \otimes |00\rangle + |100\rangle \otimes |01\rangle + |200\rangle \otimes |10\rangle + |255\rangle \otimes |11\rangle \rangle$$

$$= \frac{1}{2} \langle |00000000\rangle \otimes |00\rangle + |01100100\rangle \otimes |01\rangle$$

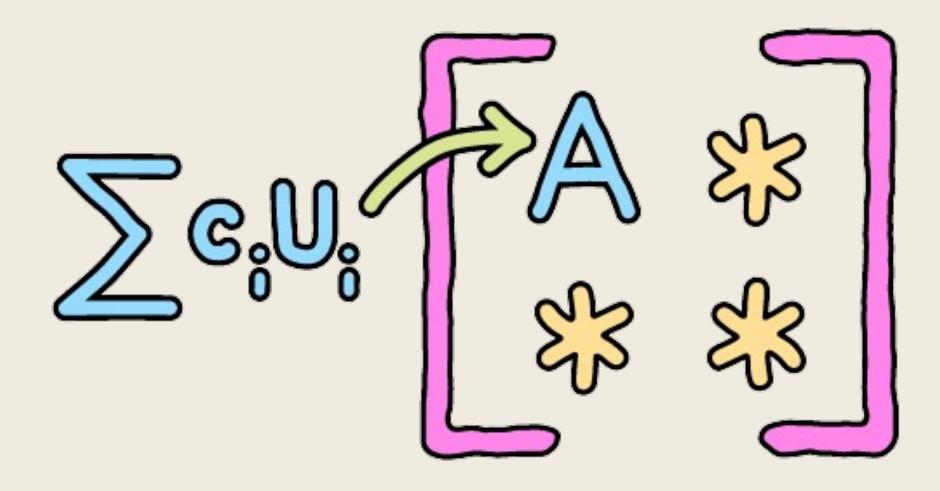
$$+ |11001000\rangle \otimes |10\rangle + |1111111\rangle \otimes |11\rangle \rangle$$



NEQR

Is there another way? How can we do it efficiently?

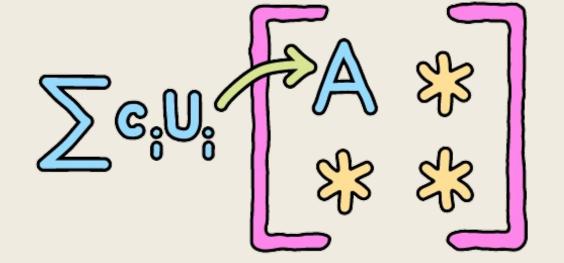
Block Encoding



Block Encoding

of A if

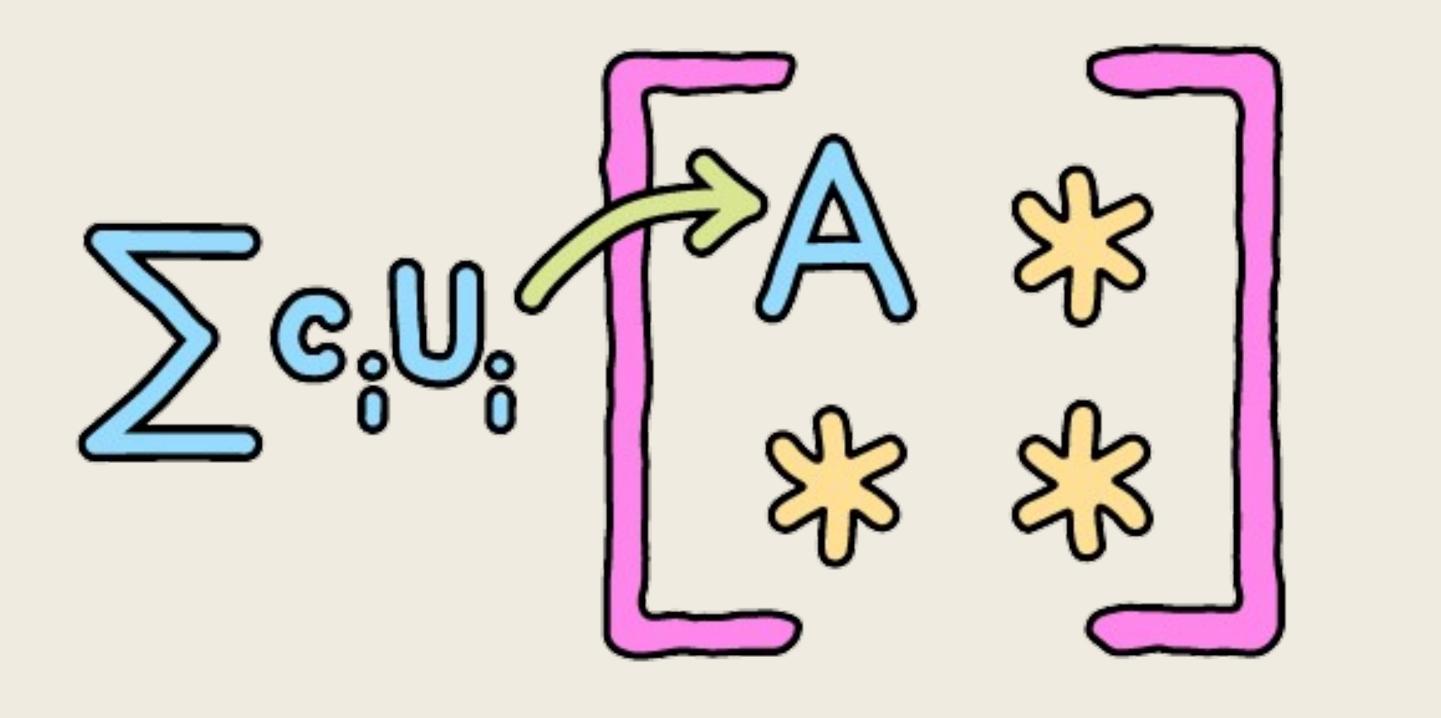
$$\left\| A - \alpha(\langle 0^a | \otimes I_n) U(|0^a \rangle \otimes I_n) \right\| \le \varepsilon.$$
(3)



Definition 1 (Block-encoding [GSLW18, Definition 43]). Suppose that A is an n-qubit matrix, $\alpha, \varepsilon \in$ \mathbb{R}_+ , and $a \in \mathbb{N}$. Then, we say that the n + a-qubit unitary operation U is the (α, a, ε) -block-encoding



Block Encoding

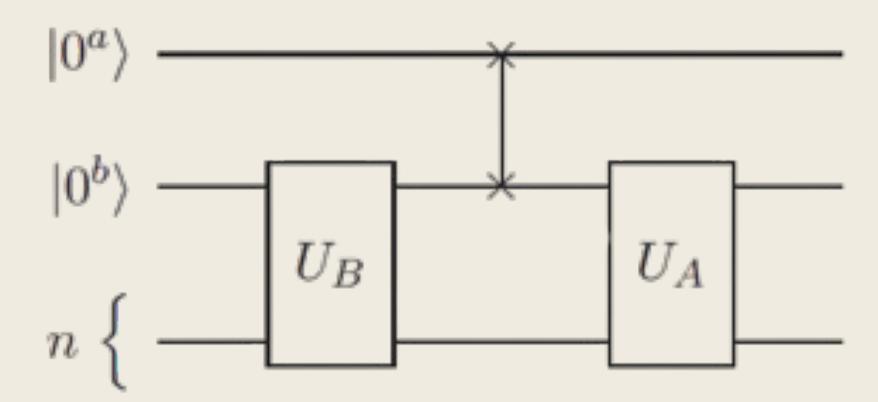


FABLE method

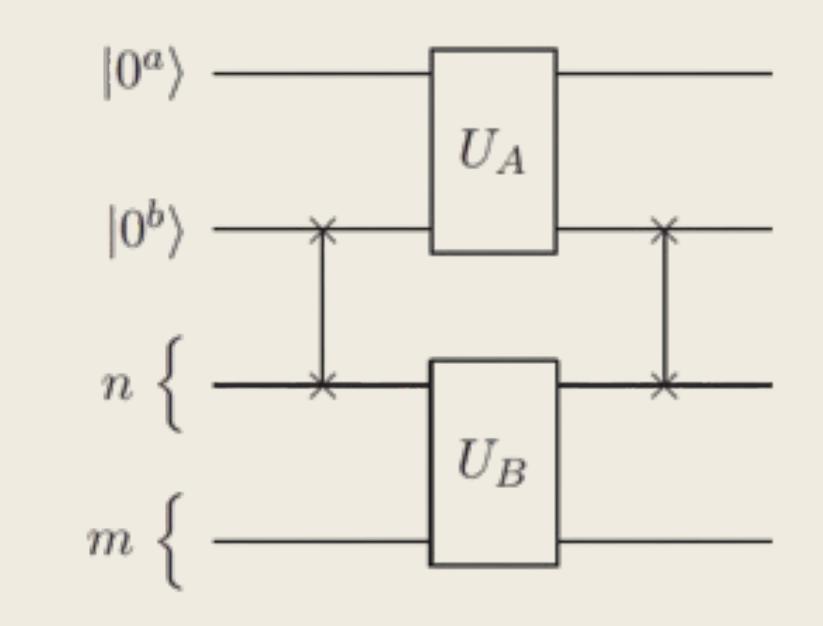
Hamiltonian Simulation method

Linear combination of Unitary matrices

Block Encoding Algebra



(a) $(\alpha\beta, a + b, \alpha\varepsilon_B + \beta\varepsilon_A)$ -block-encoding of *n*qubit matrix AB.



(b) $(\alpha\beta, a + b, \alpha\varepsilon_B + \beta\varepsilon_A)$ -block-encoding of nmqubit matrix $A \otimes B$.

QImP

qimp

Navigation

Qimp Installation Usage Changelog

- Qimp
 - Features
 - Quickstart
 - Credits
- Installation
 - Stable release
- Usage
- Changelog
 - Unreleased
 - 0.1.0 2023-11-24
 - [0.2.1] 2023-11-27

Indices and tables

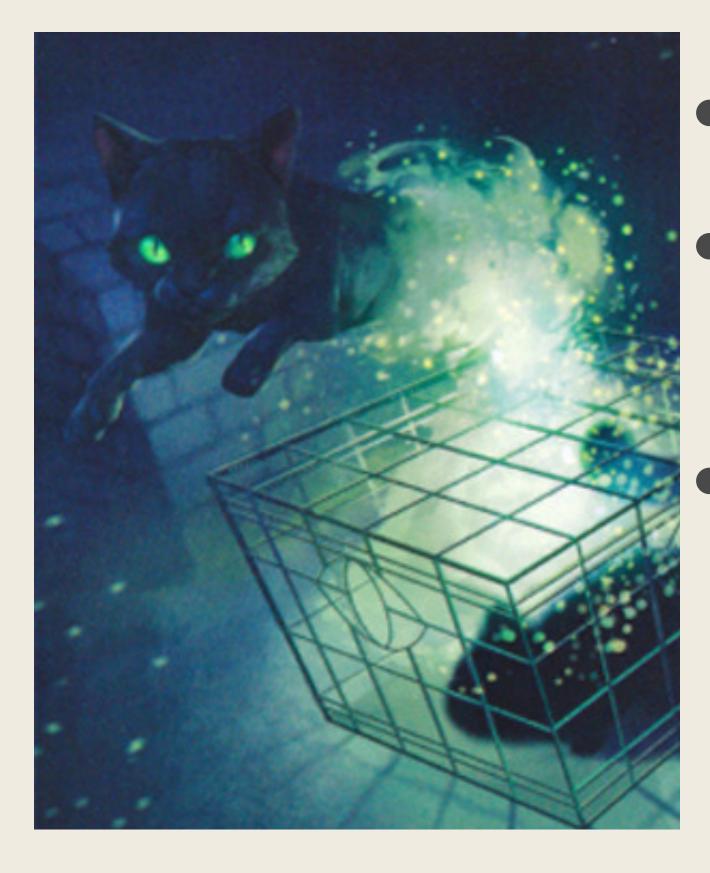
- Index
- Module Index
- Search Page

Welcome to Qimp's documentation!

QImP Milestones

- Implement different data loading techniques Implement image restoration algorithms Implement object detection techniques Implement image classification algorithms Keep the quantum advantage

Research Group Milestones



- Study how to encode structured matrices
- Study how to efficiently perform matrix algebra with these matrices
 - Exploit matrices properties for image manipulation (e.g. QSVD, QDCT, ...)